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Summary. In extensive form noncooperative game theory, at each instant t, each
agent i sets its state xi independently of the other agents, by sampling an associated
distribution, qi(xi). The coupling between the agents arises in the joint evolution of
those distributions. Distributed control problems can be cast the same way. In those
problems the system designer sets aspects of the joint evolution of the distributions
to try to optimize the goal for the overall system. Now information theory tells
us what the separate qi of the agents are most likely to be if the system were to
have a particular expected value of the objective function G(x1, x2, ...). So one can
view the job of the system designer as speeding an iterative process. Each step of
that process starts with a specified value of E(G), and the convergence of the qi

to the most likely set of distributions consistent with that value. After this the
target value for Eq(G) is lowered, and then the process repeats. Previous work
has elaborated many schemes for implementing this process when the underlying
variables xi all have a finite number of possible values and G does not extend to
multiple instants in time. That work also is based on a fixed mapping from agents to
control devices, so that the the statistical independence of the agents’ moves means
independence of the device states. This paper also extends that work to relax all of
these restrictions. This extends the applicability of that work to include continuous
spaces and Reinforcement Learning. This paper also elaborates how some of that
earlier work can be viewed as a first-principles justification of evolution-based search
algorithms.

1 Introduction

This paper considers the problem of adaptive distributed control [19, 28, 24]. There
are several equivalent ways to mathematically represent such problems. In this paper
the representation of extensive form noncooperative game theory is adopted[14, 4,
25, 3, 13]. In that representation, at each instant t each control agent i sets its state
xt

i independently of the other agents, by sampling an associated distribution, qt
i(x

t
i).

In this view the coupling between the agents does not arise directly, via statistical
dependencies of the agents’ states at the same time t. Rather it arises indirectly,
through the stochastic joint evolution of their distributions {qt

i} across time.
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More formally, let time be discrete, where at the beginning of each t all control
agents simultaneously and independently set their states (“make their moves”) by
sampling their associated distributions. After they do so any remaining portions of
the system (i.e., any stochastic part not being directly set by the control agents)
responds to that joint move. Indicate the state of the entire system at time t as yt.
(yt includes the joint move of the agents, xt, as well as the state at t of all stochastic
elements not directly set by the agents.) So the joint distribution of the moves of
the agents at any moment t is given by the product distribution qt(xt) =

Q

i qt
i(x

t
i),

and the state of the entire system, given joint move xt, is governed by P (yt | xt).
Now in general the observations by agent i of aspects of the system’s state at

times previous to t will determine qt
i . In turn, those observations are determined by

the previous states of the system. So qt
i is statistically dependent on the previous

states of the entire system, y{t′<t}. Accordingly, the system can be viewed as a
multi-stage noncooperative game among the agents and Nature. Each agent plays
mixed strategies {qt

i} at moment t, and Nature’s move space at that time consists
of those components of the vector yt not contained in xt [14, 4, 25, 3, 13]. The inter-
dependence of the agents across time can be viewed as arising through information
sets and the like, as usual in game theory.

For pedagogical simplicity, consider the problem of inducing an optimal state
y rather than the problem of inducing an optimal sequence of states. What the
designer of the system can specify are the laws that govern how the joint mixed
strategy qt gets updated from one stage of the game (i.e., one t) to the next. The
goal is to specify such laws that will quickly lead to a good value of an overall
objective function of the state of the system, F (y).3 Note that the agents work in
the space of x’s; all aspects of the system not directly set by the agents, and in
particular all noise processes, are implicitly contained in the distribution P (y | x).
Tautologically then, in distributed control the goal is to induce a joint strategy q(x)
with a good associated value of Eq(F ) =

R

dxq(x)E(F | x). Defining the world

utility G(x) ,
R

dyF (y)P (y | x), we can re-express Eq(F ) purely in terms of x, as
R

dxq(x)G(x) = Eq(G).4 Once such a q is found, one can sample it to get a final x,
and be assured that, on average, the associated F value is low. In other words, such
sampling is likely to give us a good value of our objective.

Previous work has has elaborated several iterative schemes for updating product
distributions q to monotonically lower Eq(G) [29, 30, 31, 32, 23, 33, 1]. In all of
these schemes, each q in the sequence is defined indirectly, as the minimizer of
a different G-parameterized Lagrangian, L (q). Implementing such a sequence of
Lagrangian-minimizing q’s results in the optimal control policy for the distributed
system, i.e., in the q minimizing Eq(G). However while one cannot directly solve for
the q minimizing Eq(G) in a distributed manner, as elaborated below one can solve
for the q minimizing each L (q) in a distributed manner. In this way one can find
the optimal distributed control policy using a purely distributed algorithm.

Many of these schemes are based on a steepest descent algorithm for each step
of minimizing a Lagrangian L (q). Because the descent is over Euclidean vectors q,

3Here we follow the convention that lower F is better. In addition, for simplicity
we only consider objectives that depend on the state of the system at a single instant;
it is straightforward to relax this restriction.

4For simplicity, here we indicate integrals of any sort, including point sums for
countable x, with the

R

symbol.
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these algorithms can be applied whether the xi are categorical/symbolic, continuous,
time-extended, or a mixture of the three. So in particular, they provide a principled
way to do “gradient descent over categorical variables”.

Not all previously considered algorithms for how to perform the Lagrangian-
minimizing step are based on steepest descent. However they do have certain other
characteristics in common. One is that the underlying variables xi all have a finite
number of possible values. Another is G does not extend to multiple instants in
time. This paper shows how to relax these restrictions, simply by redefining the
spaces involved. This allows the previously considered algorithms to be used for
continuous spaces, and also implement Reinforcement Learning (RL) [26, 17, 11, 15].
A final shared characteristic is that all of the previously considered algorithms for
minimizing the Lagrangians employ a fixed mapping from the moves of agents to the
setting of control devices, so that the statistical independence of the agents’ moves
means independence of the device states. This paper also shows how that restriction
can be relaxed, so that independent agents can result in coupled control devices.

The general mathematical framework for casting control and optimization prob-
lems in terms of minimizing Lagangians of probability distributions is known as
“Probability Collectives”. The precise version where the probability distributions
are product distributions is known as “Product Distribution” (PD) theory [29]. It
has many deep connections to other fields, including bounded rational game theory
and statistical physics [30]. As such it serves as a mathematical bridge connecting
these disciplines. Some initial experimental results concerning the use of PD theory
for distributed optimization and distributed control can be found in [2, 20, 1, 6, 8].
[22, 2, 20, 1, 6, 8].

The next section reviews the salient aspects of PD theory. The section does
not consider any of the schemes for the Lagrangian-minimizing step of adaptive
distributed control in great detail; the interested reader is directed to the literature.
However it is shown in that section how those schemes provide a first-principles
justification of certain types of evolution-based search algorithms.

The following section presents two ways to cast PD theory for uncountably
infinite x as PD theory for countable X. This allows us to apply all the standard
finite-X algorithms even for uncountable X. Experimental tests validating one of
those ways of recasting PD theory are presented in [7]. The following section shows
how to recast single-instant PD theory to apply to the RL domain, in which y is
time-extended. That section considers both episodic and discounted sum RL. The
final section considers varying the mapping from the moves of agents to the setting
of control devices. Experimental tests validating the usefulness of such variations
are presented in [1].

2 Review of PD theory

Say the designer stipulates a particular desired value of E(G), γ. For simplicity,
consider the case where the designer makes no other claims concerning the sys-
tem besides γ and the fact that the joint strategy is a product distribution. Then
information theory tells us that the a priori most likely q consistent with that infor-
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mation is the one that maximizes entropy subject to that information [10, 21, 16].5

In other words, of all distributions that agree with the designer’s information, that
distribution is the “easiest” one to induce by random search.

Given this, one can view the job of the designer of a distributed control system
as an iterative equilibration process. In the first stage of each iteration the designer
works to speed evolution of the joint strategy to the q with maximal entropy subject
to a particular value of γ. Once we have found such a solution we can replace the
constraint — replace the target value of E(G) — with a more difficult one, and then
repeat the process, with another evolution of q [29].

To formalize this, define the maxent Lagrangian by

L (q) , Lγ(q) , β(Eq(G)− γ)− S

= β(

Z

dxq(x)G(x)− γ)− S(q), (1)

where S(q) is the Shannon entropy of q, −
R

dxq(x)ln q(x)
µ(x)

, and for simplicity we here

take the prior µ to be uniform.6. Given γ, the associated most likely joint strategy
is the q that minimizes L (q) over all those (q, β) such that the Lagrange parameter
β is at a critical point of Lγ , i.e., such that ∂L

∂β
= 0.

Solving, we find that the qi are related to each other via a set of coupled Boltz-
mann equations (one for each agent i),

qβ
i (xi) ∝ e

−βE
q

β

(i)

(G|xi)

(2)

where the overall proportionality constant for each i is set by normalization, the
subscript qβ

(i) on the expectation value indicates that it is evaluated according to

the distribution
Q

j 6=i qj , and β is set to enforce the condition Eqβ (G) = γ. Following
Nash, we can use Brouwer’s fixed point theorem to establish that for any fixed β,
there must exist at least one solution to this set of simultaneous equations.

In light of the foregoing, one natural choice for an algorithm that lowers Eq(G)
is the repeated iteration of the following step: Start with the qβ matching a current
γ value, then lower γ slightly, and end by modifying the old qβ to find the one that
matches the new γ. A difficulty with this iterative step is the need to solve for β
as a function of γ. However we can use a trick to circumvent this need. Typically if
we evaluate E(G) at the solutions qβ , we find that it is a declining function of β.
So in following the iterative procedure of equilibrating and then lowering γ we will
raise β. Accordingly, we can avoid the repeated matching of β to each successive
constraint E(G) = γ, and simply monotonically increase β instead. This allows us
to avoid ever explicitly specifying the values of γ [32].

An alternative interpretation of this iterative scheme is based on prior knowledge
of the value of the entropy rather of the expected G. Given this alternative prior

5In light of how limited the information is here, the algorithms presented below
are best-suited to “off the shelf” uses; incorporating more prior knowledge allows
the algorithms to be tailored more tightly to a particular application.

6Throughout this paper the terms in any Lagrangian that restrict distributions
to the unit simplices are implicit. The other constraint needed for a Euclidean vector
to be a valid probability distribution is that none of its components are negative.
This will not need to be explicitly enforced in the Lagrangian here.
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knowledge, we can recast the designer’s goal as finding the q that is consistent with
that knowledge that has minimal E(G). This again leads to Eq.’s 1 and 2. Now
raising β is cast as lowering the (never-specified) prior knowledge of the entropy
value rather than the (never-specified) prior knowledge of E(G).

Simulated annealing is an example of this approach, where rather than work
directly with q, one works with random samples of it formed via the Metropolis
random walk algorithm [18, 12, 9, 27]. There is no a priori reason to use such an
inefficient means of manipulating q however. In [32] for example one works with q
directly instead. This results in an algorithm that is not simply “probabilistic” in
the sense that the updating of its variables is stochastic (as in simulated annealing).
Rather the very entity being updated is a probability distribution.

Another advantage of casting the problem directly in terms of the maxent La-
grangian is that one can even avoid the need to explicitly stipulate an annealing
schedule. In the usual way, first order methods can be used to find the saddle point
of the Lagrangian, e.g., by performing steepest ascent of L in the Lagrange param-
eter β while performing a descent in q 7.

In many situations one should use a modification of the maxent Lagrangian.
Whenever one has extra prior knowledge about the problem domain, that should be
used to modify the use of entropy as (in statistics terminology) a regularizer. This
leads to Bayesian formulations [32]. Similarly, if one has constraints {fi(x) = 0},
the Lagrangian has to be modified to accout for them. The most naive way of doing
this is to simply cast the constraints as Lagrange penalty terms {E(fi) = 0} and
add those terms to the Lagrangian, in the usual way [32, 8] 8.

2.1 How to find minima of the Lagrangian

Consider the situation where each xi can take on a finite number of possible values,
|Xi|, and we are interested in the unconstrained maxent Lagrangian. Say we are
iteratively evolving q to minimize L for some fixed β, and are currently at some
point q in Q, the space of product distributions (i.e., in the Cartesian product of
unit simplices). Using Lemma 1 of [32], we can evaluate the direction from q within
Q that, to first order, will result in the largest drop in the value of L (q):

∂R
L (q)

∂Rqi(xi = j)
= ui(j)−

X

x′
i

ui(x
′
i)/|Xi|, (3)

where ui(j) , βE(G | xi = j)+ln[qi(j)], and the symbol ∂R indicates that we do not
mean the indicated partial derivative, formally speaking, but rather the indicated
component of the 1st-order descent vector 9.

7Formally, since the maxent Lagrangian is not convex, we have no guarantee that
the duality gap is zero, and therefore no guarantee about saddlepoints. Nonetheless,
just as in other domains, first order methods here seem to work well in practice.

8Note though that since the gradient of entropy is infinite at the border of the
unit simplex, we are guaranteed that no component of q will ever exactly equal 0,
which typically means that the constraints {fi(x) = 0} will never be satisfied with
probability exactly 1.

9Formally speaking, the partial derivative is given by ui(j). Intuitively, the reason
for subtracting

P

x′
i
ui(x

′
i)/|Xi| is to keep the distribution in the set of all possible

probability distributions over x, P.
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Eq. 3 specifies the change that each agent should make to its distribution to
have them jointly implement a step in steepest descent of the maxent Lagrangian.
These updates are completely distributed, in the sense that each agent’s update at
time t is independent of any other agents’ update at that time. Typically at any
t each agent i knows qi(t) exactly, and therefore knows ln[qi(j)]. However often it
will not know G and/or the q(i). In such cases it will not be able to evaluate the
E(G | xi = j) terms in Eq. 3 in closed form.

One way to circumvent this problem is to have those expectation values be si-
multaneously estimated by all agents by repeated Monte Carlo sampling of q to
produce a set of (x, G(x)) pairs. Those pairs can then be used by each agent i to
estimate the values E(G | xi = j), and therefore how it should update its distri-
bution. In the simplest version of this, an update to q only occurs once every M

time-steps. In this scheme only the samples (x, G(x)) formed within a block of M

successive time-steps are used at the end of that block by the agents to update their
distributions (according to Eq. 3).

There are numerous other schemes besides gradient descent for finding minima
of the Lagrangian. One of these is a second order version of steepest descent, con-
strained to operate over Q. This scheme, called “Nearest Newton” [32], starts by
calculating the point p ∈ P that one should step to from the current distribution
q, if one were to use Newton’s method to descend the Lagrangian. Now in general
that p is not a product distribution. So we instead find q′, the q ∈ Q that is closest
(as measured by Kullbach-Leibler distance) to that point p; the step actually taken
is to q′.

This step from the current q turns out to be indentical to the gradient descent
step, just with an extra multiplicative factor of qi(xi = j) multiplying each associ-
ated component of that gradient descent step:

∆(qi(xi = j)) ∝ qi(j)ui(j) −
X

x′
i

qi(x
′
i)ui(x

′
i)

|Xi|
, (4)

where ui is as defined just below Eq. 3, and the proportionality constant is the step
size.

In the continuum time limit, this step rule reduces to the replicator equation of
evolutionary game theory, only with an entropic term added in [31]. (Intuitively, that
entropic term ensures the evolution explores sufficiently.) This connection can be
viewed as a first-principles justification for (particular versions of) evolution-based
search algorithms, e.g., genetic algorithms. To be precise, say we have a biological
population of many “genes”, each specifying a value x, and an associated “fitness
function” G(x). Have the frequency of each gene in the population be updated via
the replicator dynamics, as usual in evolutionary game theory. We can justify this
evolution-based search algorithm as the β → ∞ limit of Nearest Newton for the
case of a single agent with moves x. By allowing β < ∞, we can extend those
evolution-based search algorithms in a principled manner.

A final example of a Lagrangian descent scheme, which is analogous to block
relaxation, is “Brouwer updating” [31]. In that kind of updating one or more agents
simultaneously jump to their optimal distribution, as given by Eq. 2 (with β rather
than γ specified, as discussed above). It turns out that if the expectations defining
the Brouwer updating are “exponentially aged” to reflect nonstationarity, then in
the continuum time limit Brouwer updating becomes identical to Nearest Newton.
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The aging constant in Brouwer updating turns out to be identical to the step size
in Nearest Newton.

All of the update schemes can be used so long as each agent i knows or can
estimate qi together with Eq(i)

(G | xi) = E(G | xi) for all of its moves xi. No other
quantities are involved.

3 Semicoordinate transformations

3.1 Motivation

Consider a multi-stage game like chess, with the stages (i.e., the instants at which
one of the players makes a move) delineated by t. In game theoretic terms, the
“strategy” of a player is the board-configuration → response rule it adopts before
play starts [14, 4, 25, 3, 13]. More generally, in a multi-stage game like chess the
strategy of player i, xi, is the set of t-indexed maps taking what that player has
observed in the stages t′ < t into its move at stage t. Formally, this set of maps is
called player i’s normal form strategy.

The joint strategy of the two players in chess sets their joint move-sequence,
though in general the reverse need not be true. In addition, one can always find a
joint strategy to result in any particular joint move-sequence. Now typically at any
stage there is overlap in what the players have observed over the preceding stages.
This means that even if the players’ strategies are statistically independent (being
separately set before play started), their move sequences are statistically coupled. In
such a situation, by parameterizing the space Z of joint-move-sequences z with joint-
strategies x, we shift our focus from the coupled distribution P (z) to the decoupled
product distribution, q(x). This is the advantage of casting multi-stage games in
terms of normal form strategies.

More generally, given two spaces with values {x} and {z}, any onto mapping
ζ : x → z, not necessarily invertible, is called a semicoordinate system. The
identity mapping z → z is a trivial example of a semicoordinate system. Another
example is the mapping from joint-strategies in a multi-stage game to joint move-
sequences. In other words, changing the representation space of a multi-stage game
from move-sequences z to strategies x is a semicoordinate transformation of that
game. Yet another example is where Z = B

K for some K, while X = {1, 2, . . . , b}
where b ≥ 2K . In this last example X has greater cardinality than Z, yet its elements
are 1-dimensional, whereas Z’s elements are K-dimensional.

Intuitively, a semi-coordinate transformation is a reparameterization of how a
game — a mapping from joint moves to associated payoffs — is represented. So
we can perform a semicoordinate transformation even in a single-stage game. Say
we restrict attention to distributions over X that are product distributions. Then
changing ζ(.) from the identity map to some other function means that the players’
moves are no longer independent. After the transformation their move choices —
the components of z — are statistically coupled, even though we are considering a
product distribution.

Formally, this is expressed via the standard rule for transforming probabilities,

PZ(z ∈ Z) =

Z

dxPX(x)δ(z − ζ(x)) , ζ(PX), (5)
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where PX and PZ are the distributions across X and Z, respectively. To see what
this rule means geometrically, let P be the space of all distributions (product or
otherwise) over Z. Recall that Q is the space of all product distributions over X,
and let ζ(Q) be the image of Q in P. Then by changing ζ(.), we change that image;
different choices of ζ(.) will result in different manifolds ζ(Q).

As an example, say we have two players, with two possible moves each. So z
consists of the possible joint moves, labeled (1, 1), (1, 2), (2, 1) and (2, 2). Have X =
Z, and choose ζ(1, 1) = (1, 1), ζ(1, 2) = (2, 2), ζ(2, 1) = (2, 1), and ζ(2, 2) = (1, 2).
Say that q is given by q1(x1 = 1) = q2(x2 = 1) = 2/3. Then the distribution over
joint-moves z is PZ(1, 1) = PX(1, 1) = 4/9, PZ(2, 1) = PZ(2, 2) = 2/9, PZ(1, 2) =
1/9. So PZ(z) 6= PZ(z1)PZ(z2); the moves of the players are statistically coupled,
even though their strategies xi are independent.

Such coupling of the players’ moves can be viewed as a manifestation of sets
of potential binding contracts. To illustrate this return to our two player example.
Each possible value of a component xi determines a pair of possible joint moves.
For example, setting x1 = 1 means the possible joint moves are (1, 1) and (2, 2).
Accordingly such a value of xi can be viewed as a set of proffered binding contracts.
The value of the other components of x determines which contract is accepted; it is
the intersection of the proffered contracts offered by all the components of x that
determines what single contract is selected. Continuing with our example, given that
x1 = 1, whether the joint-move is (1, 1) or (2, 2) (the two options offered by x1) is
determined by the value of x2.

To relate semicoordinates to distributed control we have to fix some notation.
To maintain consistency with the discussion of maxent Lagrangians, we will have
product distributions q(x ∈ X) ∈ QX . Also as before, to allow stochasticity, we
write the ultimate space of interest as y with associated cost function F (y). This
means that x sets z which stochastically sets y:

Eq(F ) =

Z

dy P (y)F (y) =

Z

dz P (z)G(z) =

Z

dx q(x)G(x) (6)

where

G(z) ,

Z

dy F (y)P (y | z) (7)

=

Z

dx G(x)δ(ζ(x)− z);

G(x) =

Z

dy F (y)P (y | x) (8)

=

Z

dy F (y)P (y | ζ(x)).

Finally, note that so long as |X | ≥ |Z|, any distribution PZ(z) is the image under
ζ of at least one distribution PX (x). In other words, any distribution over Z can be
converted, in at least one way, into a distribution over X . This holds even if neither
PX nor PZ is a product distribution, and is due to the fact that ζ is surjective.10

10If need be, for each z ∈ Z, we can set PX (x) = PZ(ζ(x)) for exactly one of
the x ∈ ζ−1(z), and set PX (x) = 0 for all the other x in z’s pre-image. It’s the
surjectivity of ζ that guarantees that that pre-image is non-empty.
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3.2 Representational properties

Binding contracts are a central component of cooperative game theory. In this sense,
semicoordinate transformations can be viewed as a way to convert noncooperative
game theory into a form of cooperative game theory. Indeed, any cooperative mixed
strategy can be cast as a non-cooperative game mixed strategy followed by an ap-
propriate semicoordinate transformation. Formally, any PZ , no matter what the
coupling among its components, can be expressed as ζ(PX) for some product distri-
bution PX and associated ζ(.) 11

Less trivially, given any model class of distributions {PZ}, there is an X and
associated ζ(.) such that {PZ} is identical to ζ(QX). Formally this is expressed in a
result concerning Bayes nets. For simplicity, restrict attention to finite Z. Order the
components of Z from 1 to N . For each index i ∈ {1, 2, . . . , N}, have the parent

function P(i, z) return a subset of the components of z with index greater than
i, where the choice of what components depends only on i, and not on z. So for
example, with N > 5, we could have P(1, z) = (z2, z5)∀z. Another possibility is that
P(1, z) is the empty set, independent of z.

Let A(P) be the set of all probability distributions PZ that obey the conditional
dependencies implied by P: ∀ PZ ∈ A(P), z ∈ Z,

PZ(z) =
N
Y

i=1

PZ(zi | P(i, z)). (9)

(By definition, if P(i, z)) is empty, PZ(zi | P(i, z)) is just the i’th marginal of PZ ,
PZ(zi).) Note that any distribution PZ is a member of A(P) for some P — in the
worst case, just choose the exhaustive parent function P(i, z) = {zj : j > i}.

For any choice of P there is an associated set of distributions ζ(QX) that equals
A(P) exactly:

Theorem 1: Define the components of X using multiple indices: For all i ∈
{1, 2, . . . , N} and possible associated values (as one varies over z ∈ Z) of the vector
P(i, z), there is a separate component of x, xi;P(i,z). Have this component’s allowed
values be the those of zi. Define ζ(.) recursively, starting at i = N and working to
lower i, by the following rule: ∀ i ∈ {1, 2, . . . , N},

zi = [ζ(x)]i = xi;P(i,z).

Then A(P) = ζ(QX).

Proof: First note that by definition of parent functions, due to the fact that we’re
iteratively working down from higher i’s to lower ones, ζ(x) is properly defined. Next
plug that definition into Eq. 5. For any particular x and associated z = ζ(x), those
components of x that do not “match” z by having their second index equal P(i, z)
get integrated out. After this the integral reduces to

PZ(z) =
N
Y

i=1

PX([xi;P(i,z)] = zi),

11In the worst case, one can simply choose X to have a single component, with ζ(.)
a bijection between that component and the vector z — trivially, any distribution
over such an X is a “product distribution”.
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i.e., is exactly of the form stipulated in Eq. 9. Accordingly, for any fixed x and
associated z = ζ(x), ranging over the set of all values between 0 and 1 for each
of the distributions PX([xi;P(i,z) = zi) will result in ranging over all values for the
distribution PZ(z) that are of the form stipulated in Eq. 9. This must be true for
all x. Accordingly, ζ(QX) ⊆ A(P). The proof that A(P) ⊆ ζ(QX) goes similarly:
For any given PZ and z, simply set PX([xi;P(i,z)] = zi) for all the independent
components xi;P(i,z) of x and evaluate the integral in Eq. 5. QED.

Intuitively, each component of x in Thm. 1 is the conditional distribution PZ(zi |
P(i, z)) for some particular instance of the vector P(i, z)). Thm. 1 means that in
principle we never need consider coupled distributions. It suffices to restrict attention
to product distributions, so long as we use an appropriate semicoordinate system.
In particular, mixture models over Z can be represented this way.

The Kullback Leibler (KL) distance from the distribution a(y) to b(y) is defined
as

KL(a||b) , −

Z

dy a(y)ln[
b(y)

a(y
].

It is a common way of measuring how far apart two distributions are. It is straight-
forward to see that the product distribution a(y) ,

Q

i ai(yi) with minimal KL
distance to b is given by ai(yi) =

R

dy−i b(yi, y−i), where y−i is all components of y
other than i. We can use semi-coordinate transformations to establish a generaliza-
tion of this that is related to Thm. 1:

Corollary 1: Of the Bayes nets q(z) that have parent function P, the one with
minimal KL to p(z) is given by

qZ(zi | P(i, z)) = p(zi | P(i, z)) ∀i, z.

Proof: Perform a semi-coordinate transformation like that discussed in Thm. 1 on
both q and p. So qX is a product distribution. Use our freedom in setting pX to
ensure that ∀z, ∀x ∈ ζ−1(z), pX (x)/qX (x) has the same value. (Note that in general,
this means that if we change qX , we must also change pX .) Due to the rule for
transforming probabilities, that value of the ratio must be pZ(ζ(x))/qZ(ζ(x)). Now
write

−

Z

dz qZ(z)ln[
pZ(z)

qZ(z)
] = −

Z

dz

Z

dx δ(z − ζ(x))qX (x) ln[
pZ(z)

qZ(z)
]

= −

Z

dx

Z

dz δ(z − ζ(x))qX (x) ln[
pZ(z)

qZ(z)
]

= −

Z

dx qX (x) ln[
pZ(ζ(x))

qZ(ζ(x))
]

= −

Z

dx qX (x) ln[
pX (x)

qX (x)
]

where the last step used our stipulation on the ratio of pX and qX . In other words,
the KL distance from q to p is the same in both Z and X .
This means that the qZ that minimizes (Z-space) KL distance to pZ is the image
under ζ of the qX that minimizes (X -space) KL distance to pX . However since qX
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is a product distribution, the qX that minimizes (X -space) KL distance to pX is
just given by the product of the associated (X -space) marginals of pX . Under our
semi-coordinate transformation, those marginals of pX get mapped to the associated
Bayes net conditional distributions in Z. QED

Coroll. 1 can be extended in a straightforward way to other graphical mod-
els besides Bayes nets. For example, it can be extended to models having “hidden
variables”, like mixture models. So long as the appropriate semi-coordinate trans-
formation changes the graphical model qX into a product distribution, minimal
KL distance arises when each component of the product qX equals the associated
marginal of pX . Translating this into Z space, , each term in the optimal graphical
model qZ is just associated conditional of pZ).

3.3 Maxent Lagrangians over X rather than Z

While the distribution over X uniquely sets the distribution over Z, the reverse
is not true. However so long as our Lagrangian directly concerns the distribution
over X rather than the distribution over Z, by minimizing that Lagrangian we
set a distribution over Z. In this way we can minimize a Lagrangian involving
product distributions, even though the associated distribution in the ultimate space
of interest is not a product distribution.

The Lagrangian we choose over X should depend on our prior information,
as usual. If we want that Lagrangian to include an expected value over Z (e.g.,
of a cost function), we can directly incorporate that expectation value into the
Lagrangian over X, since expected values in X and Z are identical:

R

dzPZ(z)A(z) =
R

dxPX(x)A(ζ(x)) for any function A(z). (Indeed, this is the standard justification
of the rule for transforming probabilities, Eq. 5.)

However other functionals of probability distributions can differ between the
two spaces. This is especially common when ζ(.) is not invertible, so X is larger
than Z. In particular, while the expected cost term is the same in the X and Z
maxent Lagrangians, this is not true of the two entropy terms in general; typically
the entropy of a q ∈ Q will differ from that of its image, ζ(q) ∈ ζ(Q) in such a case.

More concretely, the fully formal definition of entropy includes a prior probability
µ: SX ,

R

dxp(x)ln( p(x)
µ(x)

), and similarly for SZ . So long as µ(x) and µ(z) are related

by the normal laws for probability transformations, as are p(x) and p(z), then if the
cardinalities of X and Z are the same, SZ = SX

12. When the cardinalities of the
spaces differ though (e.g., when X and Z are both finite but with differing numbers
of elements), this need no longer be the case. The following result bounds how much
the entropies can differ in such a situation:

Theorem 2: For all z ∈ Z, take µ(x) to be uniform over all x such that ζ(x) = z.
Then for any distribution p(x) and its image p(z),

12For example, if X = Z = R
m, then ln[ p(ζ(x))

µ(ζ(x))
] = ln[

p(x)Jζ(x)

µ(x)Jζ(x)
] = ln[ p(x)

µ(x)
], where

Jζ(x) is the determinant of the Jacobian of ζ(.) evaluated at x. Accordingly, as far as
transforming from X to Z is concerned, entropy is just a conventional expectation
value, and therefore has the same value whichever of the two spaces it is evaluated
in.
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−

Z

dz p(z) ln(K(z)) ≤ SX − SZ ≤ 0,

where K(z) ,
R

dxδ(z− ζ(x)). (Note that for finite X and Z, K(z) ≥ 1, and counts
the number of x with the same image z.) If we ignore the µ terms in the definition
of entropy, then instead we have

0 ≤ SX − SZ ≤ −

Z

dz p(z) ln(K(z)).

Proof: Write

SX = −

Z

dz

Z

dx δ(z − ζ(x)) p(x) ln[
p(x)

µ(x)
]

= −

Z

dz

Z

dx δ(z − ζ(x)) p(x) ×

(ln[
p(x)

d(z)µ(x)
+ ln[d(z)])

= −

Z

dz p(z)ln[d(z)] −

Z

dz

Z

dx δ(z − ζ(x)) p(x) ln[
p(x)

d(z)µ(x)
]

where dz ,
R

dx δ(z − ζ(x)) p(x)
µ(x)

. Define µz to be the common value of all µ(x)

such that ζ(x) = z. So µ(z) = µzK(z) and p(z) = µzd(z). Accordingly, expand our
expression as

SX = −

Z

dz p(z) ln[
p(z)

µ(z)
] −

Z

dz p(z)K(z) −

Z

dz

Z

dx δ(z − ζ(x)) p(x) ln[
p(x)

d(z)µ(x)
]

= SZ −

Z

dz p(z)K(z) +

Z

dz p(z) (−

Z

dx δ(z − ζ(x))
p(x)

p(z)
ln[

p(x)

p(z)
]).

The x-integral of the right-hand side of the last equation is just the entropy of
normalized the distribution p(x)

p(z)
defined over those x such that ζ(x) = z. Its maxi-

mum and minimum are ln[K(z)] and 0, respectively. This proves the first claim. The
second claim, where we “ignore the µ terms”, is proven similarly. QED.

In such cases where the cardinalities of X and Z differ, we have to be careful
about which space we use to formulate our Lagrangian. If we use the transformation
ζ(.) as a tool to allow us to analyze bargaining games with binding contracts, then the
direct space of interest is actually the x’s (that is the place in which the players make
their bargaining moves). In such cases it makes sense to apply all the analysis of the
preceding sections exactly as it is written, concerning Lagrangians and distributions
over x rather than z (so long as we redefine cost functions to implicitly pre-apply
the mapping ζ(.) to their arguments). However if we instead use ζ(.) simply as a
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way of establishing statistical dependencies among the moves of the players, it may
make sense to include the entropy correction factor in our x-space Lagrangian.

An important special case is where the following three conditions are met: Each
point z is the image under ζ(.) of the same number of points in x-space, n; µ(x)
is uniform (and therefore so is µ(z)); and the Lagrangian in x-space, Lx, is a sum
of expected costs and the entropy. In this situation, consider a z-space Lagrangian,
Lz, whose functional dependence on Pz, the distribution over z’s, is identical to the
dependence of Lx on Px, except that the entropy term is divided by n 13. Now the
minimizer P ∗(x) of Lx is a Boltzmann distribution in values of the cost function(s).
Accordingly, for any z, P ∗(x) is uniform across all n points x ∈ ζ−1(z) (all such x
have the same cost value(s)). This in turn means that S(ζ(Px)) = nS(Pz). So our
two Lagrangians give the same solution, i.e., the “correction factor” for the entropy
term is just multiplication by n.

3.4 Exploiting semicoordinate transformations

This subsection illustrates some way to exploit semicoordinate transformations to
facilitate descent of the Lagrangian. To illustrate the generality of the arguments,
situations where one has to to use Monte Carlo estimates of conditional expectation
values to descend the shared Lagrangian (rather than evaluate them closed-form)
will be considered.

Say we are currently at a local minimum q ∈ Q of L . Usually we can break out
of that minimum by raising β and then resuming the updating; typically changing β
changes L so that the Lagrange gaps are nonzero. So if we want to anneal β anyway
(e.g., to find a minimum of the shared cost function G), it makes sense to do so to
break out of any local minima.

There are many other ways to break out of local minima without changing the
Lagrangian (as we would if we changed β, for example) [32]. Here we show how
to use semicoordinate transformations to do this. As explicated below, they also
provide a general way to lower the value of the Lagrangian, whether or not one has
local minimum problems.

Say our original semicoordinate system is ζ1(.). Switch to a different semico-
ordinate system ζ2(.) for Z and consider product distributions over the associated
space X2. Geometrically, the semicoordinate transformation means we change to a
new submanifold ζ2(Q) ⊂ P without changing the underlying mapping from p(z) to
LZ(p). In practice, when the cardinalities of X1 and X2 are the same, often we keep
the product distribution unchanged when we make the transformation. This means
that the entropy term in the Lagrangian will be unchanged by the transformation,
while expected G — the ultimate object of interest — will change.

As a simple example, say ζ2 is identical to ζ1 except that it joins two components
of x into an aggregate semicoordinate. Since after that change we can have statistical
dependencies between those two components, the product distributions over X2,
ζ2(QX2), map to a superset of ζ1(QX1). Typically the local minima of that superset
do not coincide with local minima of ζ1(QX1). So this change to X2 will indeed
break out of the local minimum, in general.

13For example, if Lx(Px) = βEPx(G(ζ(.)))−S(Px), then Lz(Pz) = βEPz (G(.))−
S(Pz)/n, where Px and Pz are related as in Eq. 5.
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More care is needed when working with more complicated semicoordinate trans-
formations. Say before the transformation we are at a point p∗ ∈ ζ1(QX1). Then in
general p∗ will not be in the new manifold ζ2(QX2), i.e., p∗ will not correspond to a
product distribution in our new semicoordinate system. (This reflects the fact that
semicoordinate transformations couple the players.) Accordingly, we must change
from p∗ to a new distribution when we change the semicoordinate system.

To illustrate this, say that the semicoordinate transformation is bijective. For-
mally, this means that X2 = X1 , X and ζ2(x) = ζ1(ξ(x)) for a bijective ξ(.).
Have ξ(.), the mapping from X2 to X1, be the identity map for all but a few of
the M total components of X, indicated as indices 1 → n. Intuitively, for any fixed
x2

n+1→M = xn+1→M , the effect of the semicoordinate transformation to ζ2(.) from
ζ1(.) is merely to “shuffle” the associated mapping taking semicoordinates 1 → n to
Z, as specified by ξ(.). Moreover, since ξ(.) is a bijection, the maxent Lagrangians

over X1 and X2 are identical: LX1(ξ(pX2

)) = LX2((pX2

)).

Now say we set qX2

n+1→M = qX
n+1→M . This means we can estimate the ex-

pectations of G conditioned on possible x2
1→n from the Monte Carlo samples

conditioned on ξ(x2
1→n). In particular, for any ξ(.) we can estimate E(G) as

R

dx2
1→npX2

(x2
1→n)E(G | ξ(x2

1,...,n)) in the usual way. Now entropy is the sum of
the entropy of semicoordinates n + 1 → M plus that of semicoordinates 1 → n. So

for any choice of ξ(.) and qX2

1→n, we can approximate LX = LX2 as (our associated

estimate of) E(G) minus the entropy of pX2

1→n, minus a constant unaffected by choice
of ξ(.).

So for finite and small enough cardinality of the subspace |X1→n|, we can use our

estimates E(G | ξ(x2
1→n)) to search for the “shuffling” ξ(.) and distribution qX2

1→n

that minimizes L
X 14. In particular, say we have descended LX to a distribution

qX1

(x) = q∗(x). Then we can set qX2

= q∗, and consider a set of of “shuffling

ξ(.)”. Each such ξ(.) will result in a different distribution qX1

(x) = qX2

(ξ−1(x)) =
q∗(ξ−1(x)). While those distributions will have the same entropy, typically they will
have different (estimates of) E(G) and accordingly different local minima of the
Lagrangian.

Accordingly, searching across the ξ(.) can be used to break out of a local min-
imum. However since E(G) changes under such transformations even if we are not
at a local minimum, we can instead search across ξ(.) as a new way (in addition
to those discussed above) for lowering the value of the Lagrangian. Indeed, there
is always a bijective semicoordinate transformation that reduces the Lagrangian:
simply choose ξ(.) to rearrange the G(x) so that G(x) < G(x′) ⇔ q(x) < q(x′). In
addition one can search for that ξ(.) in a distributed fashion, where one after the
other each agent i rearranges its semicoordinate to shrink E(G). Furthermore to
search over semicoordinate systems we don’t need to take any additional samples of
G. (The existing samples can be used to estimate the E(G) for each new system.)
So the search can be done off-line.

To determine the semicoordinate transformation we can consider other factors
besides the change in the value of the Lagrangian that immediately arises under the
transformation. We can also estimate the amount that subsequent evolution under
the new semicoordinate system will decrease the Lagrangian. We can estimate that

14penalizing by the bias2 plus variance expression if we intend to do more Monte
Carlo — see [29].
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subsequent drop in a number of ways: the sum of the Lagrangian gaps of all the
agents, gradient of the Lagrangian in the new semicoordinate system, etc.

3.5 Distributions over semicoordinate systems

The straightforward way to implement these kinds of schemes for finding a good
semicoordinate systems is via exhaustive search, hill-climbing, simulated annealing,
or the like. Potentially it would be very useful to instead find a new semicoordinate
system using search techniques designed for continuous spaces. When there are a
finite number of semicoordinate systems (i.e., finite X and Z) this would amount
to using search techniques for continuous space to optimize a function of a variable
having a finite number of values. However we now know how to do that: use PD
theory. In the current context, this means placing a product probability distribution
over a set of variables parameterizing the semicoordinate system, and then evolving
the probability distribution.

More concretely, write

L (q) = β
X

θ

X

x

P (θ)
N
Y

i=1

qi(xi)G(ζ(x, θ)) + S(q) (10)

= β
X

θ

X

x

N
Y

i=1

qi(xi)P (θ)G(ζ(x, θ)) + S(q)

where θ is a parameter on the semicoordinate system. We can rewrite this using an
additional semicoordinate transformation, as

L (q∗) = β
X

x∗

N+1
Y

i=1

q∗i (x∗i )G(ζ(x∗)) + S(q∗) (11)

where x∗i = xi for all i up to N , and x∗N+1 = θ. (As usual, depending on what space
we cast our Lagrangian in, the entropy can either have the argument of the entropy
term starred — as here — or not.)

Intuitively, this approach amounts to introducing a new coordinate/agent, whose
“job” is to set the semicoordinate system governing the mapping from the other
agents to a z value. This provides an alternative to periodically (e.g., at a local
minimum) picking a set of alternative semicoordinate systems and estimating which
gives the biggest drop in the overall Lagrangian. We can instead use Nearest New-
ton, Brouwer updating, or what have you, to continuously search for the optimal
coordinate system as we also search for the optimal x. The tradeoff, of course, is that
by introducing an extra coordinate/agent, we raise the noise level all the original
semicoordinates experience. (This raises the issue of what best parameterization of
ζ(.) to use, an issue not addressed here.)

4 PD theory for uncountable Z

In almost all computational algorithms for finding minima, and in particular in the
algorithms considered above, we can only modify a finite set of real numbers from one
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step to the next. When Z is finite, we accomodate this by having the real numbers
be the values of the components of the qi. But how can we use a computational
algorithm to find a minimum of the maxent Lagrangian when Z is uncountable?

One obvious idea is to have the real numbers our algorithm works with parame-
terize p differently from how they do with product distributions. For example, rather
than product distributions, we could use distributions that are mixture models. In
that case the real numbers are the parameters of the mixture model; our algorithm
would minimize the value of the Lagrangian over the values of the parameters of the
mixture model.

An alternative set of approaches still use product distributions, with all of its
advantages, but employs a special type of semicoordinate system for Z. For peda-
gogical simplicity, say that Z is the reals between 0 and 1. So ξ must be a semi-
coordinate system for the reals, i.e., each x ∈ ξ must map to a single z ∈ ζ. Now we
want to have those of the qi that we’re modifying be probability distributions, not
probability density functions (pdf’s), so that our computational algorithm can work
with them. Accordingly, in our minimization of the Lagrangian we do not directly
modify coordinates that can take on an uncountable number of values (generically
indicated with superscript 2), but only coordinates that take on a finite number of
values (generically indicated with superscript 1).

We illustrate this for the minimization schemes considered in the preceding sec-
tions. For generality, we consider the case where Monte Carlo sampling must be
used to estimate the values of E(G | x1) arising in those schemes. Accordingly, we
need two things. The first is a way to sample q to get an z, which then provides a
G value. The second is a way to estimate the quantities E(G | x1) based upon such
empirical data. Given those, all the usual algorithms for searching q1 to minimize
the Lagrangian hold; intuitively, we treat the q2 like stochastic processes that reside
in Z but not X, and therefore not directly controllable by us.

4.1 Reimann semicoordinates

In the Reimann semicoordinate system, x1 can take values 0, 1, ..., B − 1, and x2

is the reals between 0 and 1. Then with αi , i/B, we have

z = αx1 + x2/B (12)

= αx1 + x2(αx1+1 − αx1).

We then fix q2(x2) to be uniform. So all our minimization scheme can modify are
the B values of q1(x1).

To sample q, we simply sample q1 to get a value of x1 and q2 to get a value of
x2. Plugging those two values into Eq. 13 gives us a value of z. We then evaluate
the associated value of the world utility; this provides a single step in our Monte
Carlo sampling process.

Next we need a way to use a set of such Monte Carlo sample points to estimate
E(G | x1) for all x1. We could do this with simple histogram averaging, using
Laplace’s law of succession to deal with bins (x1 values) that aren’t in the data.
Typically though with continuous Z we expect F (z) to be smooth. In such cases,
it makes sense to allow data from more than one bin to be combined to estimate
E(G | x1) for each x1, by using a regression scheme.

For example, we could use the weighted average regression
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F̂ (z) =

P

i Fie
−(z−zi)

2/2σ2

P

i e−(z−zi)2/2σ2 , (13)

where σ is a free parameter, zi is the i’th value of z out of our Monte Carlo samples,
and Fi is the associated i’th value of F . Given such a fit, we would then estimate

E(G | x1) =

Z

dx2q2(x2)F (ζ(x1, x2))

≈

Z

dx2q2(x2)F̂ (ζ(x1, x2)). (14)

This integral can then be evaluated numerically.
Typically in practice one would use a trapezoidal semicoordinate system, rather

than the rectangular illustrated here. Doing that introduces linear terms in the
integrals, but those can still be evaluated as before.

4.2 Lebesgue semicoordinates

The Lebesgue semicoordinate system generalizes the Reimann system, by param-
eterizing it. It does this by defining a set of increasing values {α0, α2, ..., αB} that
all lie between 0 and 1 such that α0 = 0 and αB = 1. We then write

z = αx1 + x2(αx1+1 − αx1). (15)

Sampling with this scheme is done in the obvious way. The expected value of G
if q2 is uniform (i.e., all x2 are equally probable) is

E(G) =
X

x1

q1(x
1)

Z

dx2q2(x2)F [αx1 + x2(αx1+1 − αx1)]

=
X

x1

q1(x
1)

Z α
x1+1

α
x1

dz
F (z)

αx1+1 − αx1
(16)

and similarly for E(G | x1). When the αi are evenly spaced, the Lebesgue system
just reduces to the Reimann system, of course.

Note that for a given value of x1, we have probability mass 1 in the bin follow-
ing αx1 . So q1(x1) sets the cumulative probability mass in that bin. Changing the
parameters αi will change what portion of the real line we assign to that mass —
but it won’t change the mass.

This may directly affect the Lagragian we use, depending on whether it’s the X-
space Lagrangian or the Z-space one. In the Reimann semicoordinate system, SX ∝
SZ , and both Lagrangians are the same (just with a rescaled Lagrange parameter).
However in the Lebesgue system, if the αi are not evenly spaced, those two entropies
are not proportional to one another. Accordingly, in that scenario, one has to make
a reasoned decision of which maxent Lagrangian to use.

The {αi} are a finite set of real numbers, just like q1. Accordingly, we can
incorporate them along with q1 into the argument of the maxent Lagrangian, and
search for the Lagrangian-minimizing set {αi} and q1 together 15. In fact, one can

15Compare this to the scheme discussed previously for searching directly over
semicoordinate transformations, where here the search is over probability distribu-
tions defined on the set of possible semicoordinate transformations.
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even have q1 fixed, along with q2, and only vary the {αi}. The difference between
such a search over the {αi} when q1 is fixed, and a search over q1 when the {αi}
are fixed, is directly analogous to the difference between Reimann and Lebesgue
integration, in how the underlying distribution P (z) is being represented.

Whether or not q1 is also varied, one must be careful in how one does the search
for each αi. Unlike for each {qi}, each αi does not arise as a multilinear product, and
therefore appears more than once in the Lagrangian. For example, any particular
αx1 term arises in Eq. 16 twice as a limit of an integral, and twice in an integrand.
All four instances must be accounted for in differentiating the E(G) term in the
Lagrangian with respect to that αx1 term.

4.3 Decimal Reimann semicoordinates

In the standard Reimann semicoordinate system, we use only one agent to decide
which bin x1 falls into. To have good precision in making that decision, there must
be many such bins. This often means that there are few Monte Carlo samples in
most bins. This is why we need to employ a regression scheme (with its attendant
implicit smoothness assumptions) to estimate E(G | xi).

An alternative is to break x1 into a set of many agents, through a hierarchical
decimal-type representation. For example, say x1 can take on 2K values. Then under
a binary representation, we would specify the bin by

x1 =

K
X

i=1

x1
i 2
−i (17)

where x1
i is the bit specifying agent i’s value. With this change updating the La-

grangian is done by K agents, with each agent i estimating E(G | x1
i ) for two values

of x1
i , rather than by a single agent estimating E(G | x1) for all 2K values of x1.
With this system, each agent performs its estimations by looking at those Monte

Carlo samples where z fell within one particular subregion covering half of [0.0, 1.0].
So long as the samples weren’t generated from too peaked a distribution (e.g., early
in the search process), there will typically be many such samples, no matter what
bit i and associated bit value x1

i we are considering. Accordingly, we do not need
to perform a regression to estimate E(G | x1

i ) to run our Lagrangian minimization
algorithms 16. When q is peaked, some of bin counts from the Monte Carlo data
may be small. We can use regression as above, if desired, for such impoverished bins.
Alternatively, we can employ a Lebesgue-type scheme to update the bin borders, to
ensure that all x1

i occur often in the Monte Carlo data.

5 PD theory for Reinforcement Learning

In this section we show how to use semicoordinate transformations and PD the-
ory for a single RL algorithm playing against nature in a time-extended game with
delayed payoffs. The underlying idea is to “fracture” the single learner across mul-
tiple timesteps into a set of separate agents, one for each timestep. This gives us a

16As usual, we could have the entropy term in the Lagrangian be based on either
X space or Z space.
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distributed system. Constraints are then used to couple those agents. It is straight-
forward to extend this approach to the case of a multi-agent system playing against
nature in a time-extended game.

5.1 Episodic RL

First consider episodic RL, in which reward comes only at the end of an episode of
T timesteps. The learner chooses actions in response to observations of the state of
the system via a policy. It does this across a set of several episodes, modifying its
policy as it goes to try to maximize reward. The goal is to have it find the optimal
such policy as quickly as possible.

To make this concrete, use superscripts to indicate timestep in an episode. So
z = (z1, z2, z3, . . . zT ) = ζ(x). If we assume the dynamics is Markovian, P (z) =
P (z1)P (z2 | z1)P (z3 | z2) . . . P (zT | zT−1). Typically the objective function G
depends solely on zT . For the conventional RL scenario, each zt can be expressed
as (st, at), where st is the state of the system at t, and at is the action taken then.

As an example, say the learner only takes into account the previous state when
deciding its current action, and that it observes the state of the system (at the
previous instant) with zero error. As a matter of notation, we must decide where
in the sequence . . . → state → action → state . . . to put the dividing lines between
successive moments in time. Choose to put the dividing lines between a state and
the succeeding action. So the state at t is conditionally independent of the action at
t− 1, given the state at t− 1 and the action at t. Accordingly we can write

P (zt | zt−1) = P (st, at | st−1, at−1) = P (at | st−1)P (st | st−1, at). (18)

P (z) is not a product distribution over the components of z. So in the usual way
we must use a semicoordinate transformation ζ(.) to represent each of the condi-
tional distributions (see Thm. 1). This will allow us to use a product distribution to
represent the system. The result is an X far larger than Z, and we write P (z) with
abbreviated notation as

P (s1, a1, . . . , sT , aT ) = P (a1)P (s1)
Y

t>1

P (at | st−1)P (st | st−1, at)

= qA1(a1)qS1(s1)
Y

t>1

qt,st−1(a
t)qt,st−1,at(s

t). (19)

where the subscripts A1 and S1 indicate the components of q associated with the
time-1 action and state, respectively. (Note we implicitly assume that the action
at time 1 is decided independently of the state then.) In RL we typically can only
control the qt,st−1 distributions. While the other qi go into the Lagrangian, they are
fixed by nature and not directly varied by us.

Recall that the usual reason we restrict ourselves to (low-dimensional) prod-
uct distributions in PC is that their updating is tractable, whereas updating of
(high-dimensional) fully coupled distributions would not be. In contrast, here the
restriction to product distributions is not a restriction that is imposed to make up-
dating tractable. Rather it is simply a reflection of the Markovian character of the
problem.

It may be desired that the policy of the learner be constant across each
episode (i.e., stationary). To impose that we can add penalty terms λi[qt,s(a) −
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qt+1,s(a)] ∀t, s, a to the X-space Lagrangian to enforce time-translation invariance
in the usual way. 17,18. Time-translation invariance of the P (st | st−1, at−1) does
not explicitly need to be addressed. Indeed, it need not even hold.

As usual, the E(G) term in our Lagrangian has the same value whether we
evaluate it as

Z

dx q(x)G(x) ,

Z

dx q(x)G(ζ(x)) (20)

or as
Z

dz P (z)G(z) ,

Z

dz [

Z

dx q(x)δ(ζ(x)− z)]G(z). (21)

Also as usual, in contrast to the E(G) term the entropy term in the Lagrangian
can have a different value, depending on whether we consider the X-space entropy,
R

dx q(x)ln[q(x)] or the Z-space entropy,
R

dz P (z)ln[P (z)]. For simplicity, here we
will consider the X-space Lagrangian.

Up to an overall additive constant, the X-space Lagrangian is

L ({qt,st−1}) = β
X

a,s

qA1(a1)qS1(s1)
Y

t>1

qt,st−1(a
t)qt,st−1,at(s

t)G(s)

− S(qA1) −
X

t>1,st

S(qt,st) +
X

t>1,s,a

λt,s,a[qt,s(a)− qt−1,s(a)]

(22)

where s and a indicate the trajectories of all st and all at, respectively, and the
entropy function S(.) should not be confused with the subscript s1 on q (which
indicates the component of q referring to the time-1 value of the state variable).

We can then use any of the standard techniques for finding the critical point
of this Lagrangian. So for example say we use Nearest Newton. Then at the end of
each episode, for each t > 1, s, a, we should increase qt,s(a) by

α
h

qt,s(a)
“

βE(G | st−1 = s, at = a) + ln(qt,s(a))+ λt,s,a−λt+1,s,a

”

− const
i

, (23)

where as usual α is the step size and const is the normalization constant (see Eq. 4).
Monte Carlo can be used to estimate the expectation values. Note that in addition
to q, the Lagrange parameters must be periodically updated, for example in a first
order ascent method [5].

Similarly, a parallel Brouwer update would set

qt,s(a) ∝ e−βE(G|st−1=s,at=a)+ λt,s,a−λt+1,s,a (24)

If we use Monte Carlo with geometric data-aging to estimate the expectation value,
then this update rule can be viewed as a version of Q-learning [26] modified by
inclusion of the Lagrange parameters, by indexing of (state, action) pairs by time,
and by the use of probability distributions rather than Q-functions as the real-
valued function of state-action pairs. Note though that here such a use of real-valued

17Note that unlike constraints over X, those over Q are not generically true only
to some high probability, but rather can typically hold with probability 1.

18If such constancy is a hard and fast requirement, rather than just desirable,
then the simplest aproach is simply to have a single agent with a distribution qs(a)
that sets qt,s(a) ∀t.
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functions of state-action pairs is derived, from the nature of the Markovian process.
In contrast, as conventionally considered in RL, the choice of working with a real-
valued function of state-action pairs (as opposed to a real-valued function of states,
like the value function for example) is essentially arbitrary.

The Lagrange parameters λt,s,a can provide useful information about the sen-
sitivities of performance to the stationarity requirement for different moments in
time, and for different state-action pairs. In addition we can also stop their growth
short, so that they do not force stationarity exactly. Doing this allows the system
to have some non-stationarity, if doing so helps performance.

We can enforce the time-translation invariance without the λt,s,a Lagrange pa-
rameters. This is done by rewriting the Lagrangian so that separately for every s
and a, the variables {qt,s(a) : t = 1, . . . T} are explicitly set equal to one another.
This means using a single variable qs(a) rather than the time-indexed set qt,s(a).

In this alternative our formula for the Lagrangian and update rules have to be
changed to reflect the fact that a single qs(a) can contribute more than once to
a particular trajectory (s, a). This potential multiplicity modifies the Monte Carlo
estimation procedure as well. In particular, it means that a single Monte Carlo
episode may contribute more than one datum to the estimation of a term E(G | s, a).

Consider updating qs(a) for one particular s − a pair under this alternative
approach. To do so first define (a, s) as the entire history, and

q(at>1, st>1) ,
Y

t>1

qst−1(a
t)qt,st−1,at(s

t). (25)

Note that q(at>1, st>1) does not involve the variable qA1(.).
Using this shorthand we can write our alternative X-space Lagrangian as

L ({qs}) = β
X

a,s

[qA1(a1)qS1(s1) ×

X

n≥0

I((at>1, st>1) goes through (s, a) exactly n times) q(at>1, st>1)G(s)]

− S(qA1) − T
X

s

S(qs) (26)

where the indicator function I(.) equals 1 if its argument is true, 1 otherwise. Dif-
ferentiating gives

∂L ({qs})

∂qs(a)
= β

X

a,s

[qA1(a1)qS1(s1) ×

P

n≥0 I((at>1, st>1) goes through (s, a) exactly n times) nq(at>1, st>1)G(s)

qs(a)
]

+ T + T ln(qs(a)). (27)

A similar expression gives the partial derivative with respect to qA1 .
The randomly (according to q) generated Monte Carlo sample trajectories can

be used to estimate this. Note that here we have expressed the partial derivative
without conditional expectations, in contrast to how we express it for conventional
Monte Carlo estimation for Probability Collectives. (The reason for doing it this
alternative way is that it simplifies how to relate the n > 1 terms in the sum to
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empirical quantities arising in the Monte Carlo.) Accordingly, to evaluate the Monte
Carlo estimates we divide by the total number of Monte Carlo samples, not by the
total number of such samples that went through some particular state-action pair.

In practice, to deal with state-action pairs that are never visited in any of the
Monte Carlo samples, one should use shrink-wrapping (rather than, for example,
forcing samples).

5.2 Discounted sum RL

It is worth giving a brief overview of how the foregoing gets modified when we
instead have a single “episode” of infinite time, with rewards received at every t,
and the goal of the learner at any instant being to optimize the discounted sum of
future rewards.

Let the matrix P be the conditional distribution of state zt given state zt−1, and
γ a real-valued discounting factor between 0 and 1. Write the single-instant reward
function as a vector R whose components give the value for the various zt. Then if
P0 is the current distribution of (single-instant) states, z0, the world utility is

([

∞
X

t=1

(γP)t]P0) ·R

The sum is just a geometric series, and equals γP

1−γP
, where 1 is the identity

matrix, and it doesn’t matter if the matrix inversion giving the denominator term
is right-multiplied or left-multiplied by the numerator term.

We’re interested in the partial derivative of this with respect to one of the entries
of P (those entries are given by the various qi,j). What we know though (from our
historical data) is a (non-IID) set of samples of (γP)tP ·R for various values of t and
various (delta-function) P. So it is not as trivial to use historical data to estimate
the gradient of the Lagrangian as in the canonical optimization case. More elaborate
techniques from machine learning and statistics need to be brought to bear.
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